Observation of autoionization dynamics and sub-cycle quantum beating in electronic molecular wave packets

نویسندگان

  • M Reduzzi
  • W-C Chu
  • C Feng
  • A Dubrouil
  • J Hummert
  • F Calegari
  • F Frassetto
  • L Poletto
  • O Kornilov
  • M Nisoli
  • C-D Lin
  • G Sansone
چکیده

The coherent interaction with ultrashort light pulses is a powerful strategy for monitoring and controlling the dynamics of wave packets in all states of matter. As light presents an oscillation period of a few femtoseconds (T=2.6 fs in the near infrared spectral range), an external optical field can induce changes in a medium on the sub-cycle timescale, i.e. in a few hundred attoseconds. In this work, we resolve the dynamics of autoionizing states on the femtosecond timescale and observe the sub-cycle evolution of a coherent electronic wave packet in a diatomic molecule, exploiting a tunable ultrashort extreme ultraviolet pulse and a synchronized infrared field. The experimental observations are based on measuring the variations of the extreme ultraviolet radiation transmitted through the molecular gas. The different mechanisms contributing to the wave packet dynamics are investigated through theoretical simulations and a simple three level model. The method is general and can be extended to the investigation of more complex systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-dependent electron interactions in double Rydberg wave packets.

We investigate the time-dependent evolution of a nonstationary three-body Coulomb system at energies just below the threshold for three-body breakup. Experimentally, short-pulse lasers excite two electrons in Ba to radially localized Rydberg wave packets with well-defined energy and angular momentum. Time-dependent interactions between the two electrons are probed using half-cycle electric fiel...

متن کامل

Computational Evaluation of Corrosion Inhibition of Four Quinoline Derivatives on Carbon Steel in Aqueous Phase

Molecular Dynamics (MD) simulation and Density Functional Theory (DFT) methods have been used to evaluate the efficiency of four quinoline derivatives on corrosion inhibition in the aqueous phase. Some quantum chemical parameters such as hardness (η), electrophilicity (w), polarizability (a), energy of the highest occupied molecular orbital (EHOMO), energy of th...

متن کامل

Destruction of quantum coherence and wave packet dynamics

The development of short, powerful laser pulses and of sophisticated trapping techniques within the last few years has stimulated numerous theoretical and experimental investigations on the dynamics of wave packets in elementary, material quantum systems. These wave packets are non stationary, spatially localized quantum states which are situated on the border between the microscopic and macros...

متن کامل

Quantum chemistry studies on structures and electronic properties of the Tolazoline drug on nano structure of fullerene

Tolazoline is a non-selective competitive α-adrenergic receptor antagonist. It is a vasodilator that is used to treat spasms of peripheral blood vessels (as in acrocyanosis).Tolazoline is indicated in the treatment of persistent pulmonary hypertension in the newborn (persistent fetal circulation) when systemic arterial oxygenation cannot be maintained by supplemental oxygen and mechanical venti...

متن کامل

Quantum Molecular Dynamics of Partially Ionized Plasmas

We study a partially ionized hydrogen plasma by means of quantum molecular dynamics, which is based on wave packets. We introduce a new model which distinguishes between free and bound electrons. The free electrons are modelled as Gaussian wave packets with fixed width. For the bound states the 1s-wave function of the hydrogen atom is assumed. In our simulations we obtain thermodynamic properti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016